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NOMENCLATURE

constant, a particular control
variable (p. 29)

wing area of aircraft

constant

constant

drag coefficient

constant

drag

eccentricity (p. 51)

a particular state variable (p.29)
integer

functional form defined on p. 3
acceleration due to gravity

universal gravitational constant,
functional form defined on p. 51

angular momentum (p. 51)
Hamiltonian function defined on p. 5
constant of proportionality (p. 42)
constant thrust

a real positive number

switching function defined on p. 46
integer, mass

mass of primary celestial body
integer

parameter

(thrust minus drag)/weight, radius
from primary celestial body (p. 48)

ratio r3/r2

integer

functional form defined on p. 29
time

thrust

control variable, non-dimensional
velocity (p. 15)

integer, velocity

reference velocity defined
on p. 15

ratio V3/V2

weight of aircraft

range

state variable, altitude
functional form defined on p. 3
functional form defined on p. 5

functional form defined on p. 9

functional form defined on p. 9,
mass flow rate (p. 40)

flight path angle
non-dimensional altitude (p. 15)
functional form defined on p. 10

Lagrange multiplier, function
defined on p. 54

Lagrange multiplier
Lagrange multiplier

non-dimensional range (p. 15)



m  Lagrange multiplier
IS reference demnsity
T non-dimensional time

¢ functional form defined on p. 3,
polar angle (p. 48)

9 functional form defined on p. 8
X steering angle (p. 39), (p. 48)

/] functional form defined on p. 3, 10

Subscripts
C constant
e l...r < (n+1) £

f final point

i l...n
h| 0...s
k l1...m

NO non-optimal control
o optimal
q Il...f

1,2... 1initial and intermediate points

Notation

A dot denotes differentiation with respect to the
independent variable time.

A prime denotes differentiation with respect to
non-dimensional time.

A "+" sign refers to conditions just after a cormer.

A "-" gign refers to conditions just before a cormer.
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ABSTRACT

A new procedure for handling optimization problems with corners
resulting from the imposition of restrictions is presented in this
paper. The requirements which must be met in order to apply the
methods presented here are that the dynamical equations of constraint
contain only one control variable and that these equations can be
analytically integrated along any segment of the trajectory in which
the control law is restricted. Under such circumstances it is shown
that the restricted segments of the optimal trajectory may be effec-
tively eliminated in the process of determining the changes in the
Lagrange multipliers, state variables, and Hamiltonian function from
one side of the restricted segment to the other. A set of conditions
which may be used to determine the changes or "jumps" in the Lagrange
multipliers and Hamiltonian are obtained directly from a set of corner
conditions developed here for trajectories with discontinuities in the
state variables. With the use of these conditions, there is no need
to integrate the Euler equations along the restricted arc as is usually
done in the literature.

It is shown that the discontinuous solution resulting from the
elimination of the restricted segment may be made continuous again,
if desired, through the use of parameters.

A number of example problems using the theory developed in the
paper are presented to show the wide range of applicability of the
theory. The examples include optimization problems with both first
order and second order state variable constraints, optimal staging
of a rocket vehicle with coasting periods, and optimal orbit transfer
with coasting periods.

vii



SECTION I
INTRODUCTION

An optimal trajectory between any two given points in state
space, frequently will not be composed of one smooth continuous
arc. Often, as has been demonstrated in the literature, an optimal
trajectory is composed of a number of arcs which are joined at
"corner points'. In this paper, a corner point is defined to be
any point of the optimal trajectory at which the optimal control
variable or its rate of change is discontinuous or a point at
which the optimal control law changes form.

Constraints on state and/or control variables in a particular
optimization problem will generally lead to solutions in which a
portion of the optimal trajectory is composed of a state variable
or control variable boundary. In this case, the corner points
correspond to the entrance and exit points to and from the boundary.
The optimal trajectory may or may not be smooth at these points.

The requirement that an optimal trajectory have certain pre-
scribed discontinuities in the state variables or follow certain
modes of operation at some point or points along the trajectory
will also lead to solutions with corner points. In these cases the
corner points will correspond to the points of discontinuity in the
state variables or the points in which a change is made from an
optimal to a prescribed mode of operation. Here again, the resulting
trajectory will not necessarily be smooth at these points.

There are numerous other situations in optimal control
synthesis in which the resulting trajectory will contain a number
of cormers.

The type of corner points of primary interest in this paper
are those which result either from the imposition of state variable
constraints, from the possibility of discontinuities in state
variables, or from certain allowable modes of control variable
operation. An example of each of these situations may be found in
the flight of a multi-stage rocket vehicle. Due to structural con-
siderations, limitations must be imposed on certain combinations of
the state variables and, since the vehicle is multi-staged, the
mass may be discontinuous at various points along the trajectory.
Finally, since staging takes place during a coast, this coasting
period represents a mode of operation during which certain control
variables are known.

A fundamental step in solving problems of this nature is to
determine how to optimally join the arcs of this trajectory together
at the corner points. Methods for handling corners resulting from
state variable constraints are to be found in the literature. These



methods are based on the concept of introducing the equation of
constraint into the formulation of the problem with the use of
Lagrange multipliers. As a result of this procedure, two sets of
Euler equations are obtained. One set is applicable for the
unrestricted segments of the trajectory, and one set is applicable
to the trajectory which follows the constraint. In addition, corner
conditions are obtained which govern the joining of these segments.
The difficulty associated with this procedure is that the jumps in
the Lagrange multipliers and the Hamiltonian function are obtained
separately at the entrance and exit points. Thus the Euler equations
must be integrated along the state variable constraint in order to
determine the proper values for the Lagrange multipliers when
leaving the constraint. If the bounded portion of the trajectory

is long and if the Euler equations applicable to this portion of

the trajectory cannot be integrated analytically (they usually
can't), then considerable errors and difficulties can be intro-
duced into the solution by the numerical integration of these
equations.

In this paper it is demonstrated that for problems with one
control variable, the conditions needed for optimally joining corner
points can be obtained without integrating the Euler equations along
the restricted trajectory. This may be done by confining attention
to the unrestricted portion of the trajectory and considering the
optimal trajectory to be discontinuous between points which contain
the restricted trajectory. If this procedure is followed, a set of
"jump" conditions in terms of entering and leaving points are
obtained for the state variables by analytically integrating the
dynamical constraint equations subject to the restriction.” The
"jump'" conditions for the associated Lagrange multipliers are
obtained immediately from the corner conditions which are developed
here for trajectories with discontinuities in the state variables.
This gives directly the change in the state variables, Lagrange
multipliers, and Hamiltonian function between the points where the
optimal path meets and leaves the bounding constraint. This means
that the only time the Euler equations need be integrated is over
portions of the trajectory which are unrestricted. It is further
demonstrated in this paper that a problem with a discontinuity
resulting from considerations just discussed may be transformed into
a problem with continuous state variables through the use of parameters.
Although the two cases are theoretically equivalent, this procedure
may be useful in working out the solutions to a specific problem.

A number of examples which include the use of parameters are
worked out in detail in this paper to illustrate the new procedure

*The requirement of being able to analytically integrate the
restricted equations of motion is met for a large class of important
problems as will be shown in Section IV.




which may be used to handle problems formulated with state variable con-
straints, coasting arcs, and discontinuities in state variables. One of
these examples of particular interest which involves coasting arcs and
discontinuities is the determination of the optimal flight of a multi-
stage rocket vehicle.

The methods for handling restricted arcs presented in Section III
involve a discussion of the use of parameters. Since the necessary
optimizing conditions for variational problems with parameters is not
readily found in the literature, the development of the necessary
optimizing conditions for a general problem of Bolza formulated with
parameters is presented first in Section II. Also included in this
section is the introduction of the functional z* with an explanation
of how the requirement dz* = 0 results in a necessary end point corner
condition for an extremum. This condition is fundamental to the methods
presented in Section III.

SECTION II
AN EXTENSION OF THE PROBLEM OF BOLZA
The Formulation

The introduction of parameters and additional constraints — The
problem of Bolza, as formulated by BlissI, may be written in terms of
the modern concepts of state and control variables. Using this modern
notation, the problem of Bolza is that of finding in a class of state
and control variables functions

v (8) u (t) i=1l,...,,n k=1,...,m (2.1)
satisfying differential equations and end conditions of the form

A

i = @i(yl,...,yn,ul,...,um,t), (2.2)

\ye(tl’tf’yil’yif) =0, e=1,...,v < 2n + 2 (2.3)

those which minimize a sum of the form

t
f
1

In this section the problem of Bolza will be extended so that
parameters and additional constraints relating both end points and



corner points can also be included in the above formulation. The
optimizing conditions which result from this extension will be needed
for the development of the methods for handling restricted arcs as
presented in Section III.

In order to formulate the problem of Bolza to include parameters,
two approaches may be used to introduce them. They may be introduced
either as a separate quantity resulting in three types of variables,
namely, state, control, and parameter, or the parameters may be con-
sidered as state variables with an equation of constraint given by,
p=0,
The former approach has been used by Pontryagin2 to introduce
parameters into the formulation of the Maximum Principle. The latter
approach is simpler, however, and will be used here. Even though a
parameter will be treated as a state variable in the following analysis,

it will be given a special symbol, p, in order to avoid confusion.

Constraints relating to end points and/or corners will be intro-
duced by employing the following notation for these conditions

Te(tq,yiq,pj) =0 e = é...v S (n+ 1F (2.5)
j=0,1,...s
q=1...f

where q refers to an end point or a corner point. In particular,

q =1 and q = f are end points and q = 2,3,...f - 1 are corner points.
The range on the subscripts i,k,e,j, and q will be as given in
equations (2.1) and (2.5) for the remainder of the material presented
in this report.

The extended problem of Bolza to be comnsidered here will be that of
finding in a class of state and control variable functions

yi(0)  u (t) Py (2.6)

satisfying differential constraints and end point/cormer conditions of
the form

§1 = @3(yg+--YpsUie+-Up,P1.--Pgst), 2.7
pj =0, (2.8)

. =0 s 2.9
We(tq’yiq pj) (2.9

Those which minimize a sum of the form

t
f
Z(tl,tf,yil,yifpj) ""/‘ [F(yi,uk,pj,t)] dt . (2.10)
t
1




The Necessary Optimizing Conditions

Introduction of Lagrange Multipliers - The necessary optimizing con-
ditions for the above problem with constraints can be obtained by applying
the usual method of Lagrange multipliers3. The assertion is made that
optimal solutions to the following functional formed with the use of the
multipliers u, , Ki’ and Aj

t

N £

Z =2+ ul¥, + F+)\i(}'7j_— ;) +xjf;j dt, (2.11)
t
1

subject to no constraints will also be solutions to the functional form
given by equation (2.10) subject to the comnstraints (2.7), (2.8), and
(2.9). It is noted that the functional z* given by equation (2.11) is
not only a function of the path connecting the points q [y;(t), uk(tij]

but also the quantities %q? tq and pj associated with the points q. The

necessary optimizing conditions for extremizing z* , and hence the original
problem, are obtained by applying the general principle that the optimizing
conditions which determine the path with all of the points q fixed will
remain unchanged if the points q are considered as free. Hence, two sets of
optimizing criteria will, in general, have to be satisfied: conditions
relating to the path and conditions relating to the points q.

Optimal path conditions - The optimizing conditions Eelating to the
path are obtained by fixing all of the points q so that Z" becomes

* = — g . -
If the Hamiltonian function H is defined in the usual fashion,

$; - F (2.13)

H= A0

1

Then the above integral may be written as

t

£ .

% o
!

The optimal path connecting the two points t; and tgy may be discontinuous

at the points q. Between any two points q and q + 1 the necessary conditions
to extremize Z" as given by the Euler equations from the calculus of
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variations are as follows

PH + A, =0, (2.15)
ﬂ'l_ + Aj = 0, (2.16)
P,

J
OH = 0. (2.17)
Buk

The total solution between t; and ty is obtained by joining together the

several continuous arcs between the points q, each of which satisfies the
above Euler equationss.

By multiplying equation (2.15) by dy4, equation (2.16) by dpj and
equation (2.17) by duy and adding, it is easy to show that the above set
of equations has the following first integral

di = 3H
dt 3t . (2.18)

A further necessary condition for extremizing the integral given by
equation (2.12) is given by certain requirements on the Weierstrass E
function®. By reformulating this condition in terms of the notation used
here and following the methods of reference 6, it is easy to show that
these requirements reduce to

Hy > Hyg (2.19)

where H, represents the function H evaluatelwith respect to optimal control

and Hyy represents the Function H evaluated with respect to non-optimal
control.

It is concluded from equation (2.19) that H takes on a maximum with
respect to the control variables uy.

Optimal end point-cormer conditions - The optimizing conditions relating
to the points q are easily obtained*by noting that once a path is specified
for equation (2.11), the function Z” is then only a function of quantities

yiq;q’pj at the points q. Hence, from the theory of ordinary maxima and

minima, the necessary condition that z* be an extremum with respect to these
quantities is given by az* = o.




In order to obtain an explicit expression for this condition,
equation (2.11) is first written as

f
* _ = -
Z0 =2+ Y, fl[ Hdt + A dy, + )\jdpj]. (2.20)

’

Since the integrand in equation (2.20) does not necessarily repre-
sent a continuous function at the points q = 2,3...f-1 , the interval
of integration may be split into a number of subintervals with the
original integral represented as a sum of integrals as follows

* £-1 (g+1)-
27 =Z 4y, + D / [-Hdt + A,dy,; + ;\jdpj] (2.21)
q:l q+

where the minus sign is used to indicate that quantities are to be evalu-
ated just previous to a corner point and the plus sign is used to indicate
that quantities are to be evaluated just after a corner point. This
notation is not needed for the points q =1 and £ .

The end point-corner conditions may now be obtained from equation
(2.21) by setting az* = o . Carrying out this operation gives

* 3Z YA 9Z
dz” = 2% dys1 4 27 dygp + 2% e + 9% e + 9L 4.
5v11 1 e, Lo O f 793 Pj
Iy Y Y
3yiq tq Pj
£-1 (q+1)-
= q

In abbreviated notation, equation (2.22) may be written more simply as

N f-1 (q+l)-
dz” =dZ + yu d¥_ + > [- Hdt + A.dy, +)\.dp.] =0
e e &1 171 3] qf (2.23)

The formulation of the problem of Bolza has been extended in this
section to include parameters defined by equation (2.8) and end point-
corner constraints of the form given by equation (2.9). The corresponding
Euler equations, Weierstrass condition, and end point-corner conditions as
developed in this section are given by equations (2.15) - (2.19) and
equation (2.23). The methods for handling restricted arcs developed in the
following section will require use of the extensions presented here.



SECTION III
RESTRICTED TRAJECTORIES
Elimination of Restricted Arc
Problems with restricted segments - It will be assumed in the following

analysis that the quantity to be extremized as a result of following an
optimal trajectory can be expressed in the form

te

Z(Yil’yif’tl’tf) +ftlF(yi,u,t)dt (3.1)

where y; represents n state variables, u a single control variable, and t
the time. It will also be assumed that the optimal trajectory will in
general be composed of both restricted and unrestricted segments. Along
the unrestricted segments, the dynamical and kinematical equations of
constraint will be assumed to be of the form,

vi = Qi(yl’...yn,u’t), (3.2)
where the control is completely free to be determined optimally.

A restricted segment of the trajectory is classified as one along which
no optimal control law can be determined. Rather, the control is completely
predetermined as a result of the statement of the restriction. The following
are examples of problems which will generally yield optimal solutions with
restricted segments.

1. Between two points in state space, determine the optimal
trajectory which will extremize expression (3.1) subject
to constraints (3.2) and which does not violate a region

R in state variable space.

2, Between two points in state space, determine the optimal
trajectory which will extremize expression (3.1) subject
to constraints (3.2) for which a portion of the trajectory
must be flown for a given length of time with the specified
control u(t).

3. Between two points in state space, determine the optimal
trajectory which will extremize expression (3.1) for which
a portion of the trajectory is flown subject to constraints
(3.2) and a portion of the trajectory must be flown accord-
ing to modified constraints.

}'71 = ai(yl’...yn’t). (3.3)

Some physical examples of problems of the type mentioned above for aircraft
and rockets are given in Section IV,




For the purpose of discussion, it will be assumed that the optimal
trajectory in state space for each of the above situations can be repre-
sented graphically as a curve in two dimensional space with yj and t as
the ordinate and abscissa as shown below.

¥ t
UNRESTRICTED SEGMENTS

FIGURE 3.1 OPTIMAL TRAJECTORY IN STATE SPACE

For the case shown in Figure 1 the first and third segments represent
unrestricted portions of the trajectory and the middle segment represents
the restricted portion of the trajectory. If the segments of an optimal
trajectory do not distribute themselves in this fashion or if there are
more restricted and unrestricted segments than shown, this will not sig-
nificantly alter the following procedure. Hence, for the sake of brevity
all trajectories will be assumed to be as shown in Figure 1.

Analysis-For the trajectory shown in Figure 3.1, the functional form
given by expression(3.1) may be written as follows

- £
F(y; u,t)de + fF(yi’u,t)dt. (3.4)
2+ 3+

2 3

Z(Yil,yif,tl’tf ) +I F(yi’u,t)dt +f

1

Now since the control law is known along the restricted portion of the tra-
jectory, the dynamical constraints equations (3.2) or (3.3),whichever is
applicable along this portion of the trajectory,when integrated may be written
as

0019, Va2, Y13, Vn3,52,59) = 0 » (3.5)

and the second integral in the expression (3.4) may be written as (with the
aid of equations (3.2) or (3.3))

3=
f F(yi’u,t)dt = B(in,yi3,t2,t3) . (3.6)
2+



10

Hence the original statement of the problem contained in equations (3.1),
(3.2), and possibly (3.3) may be reformulated as follows: Extremize the
functional form given by

2 f

F(yj, u,t)dt +f F(y; u,t)dt , (3.7)

Z(yi1,5if,t1,t8) + B(yi2,713,t2,t3) +~/”
3+

1
subject to the following dynamical and kinematical equations of constraint

91 = ¢i(y1’...yn,u,t) , (3.8)
plus the following "jump'" conditions
(3.9)

0 (Vg = +¥n2 Y43, +*Vn3, b2, t3) = 0 -

For the purpose of analysis, the trajectory illustrated in Figure 3.1 is now
thought of as being discontinuous between the points 2 and 3. The resulting
trajectory is depicted in Figure 3.2,

Y

UNRESTRICTED SEGMENTS

t

FIGURE 3.2 DISCONTINUOUS OPTIMAL TRAJECTORY WITHOUT RESTRICTED ARC

In addition to the dynamical and kinematical equations of constraint
given by equation (3.2) the original problem may have had imposed, additional
constraints relating to end points and/or corners. These additional con-
straints remain unchanged in transforming from the original problem to the
reformulated one. These constraints for this problem may be written in the
form,

we(tq,yiq) =0 . q=1,2,3,f (3.10)

Variations of the point 2 in general cannot be made arbitrarily (even
though this is a point of discontinuity) but must be made consistent with
the arc or boundary which passes through the points 2 and 3. From the
statement of the problem, the equation of this boundary can usually be put
in the form

O(yi t) = 0. (3.11)




In particular this equation can be written as

0(yip,tp) = O . (3.12)

For most situations, introduction of equation (3.12) will insure that
variations of point 2 will be made consistent with the constraint

O(yi,t) = 0 at the point 2. [An example problem involving a second order
constraint given in Section IV will require a slight extension of the con-
dition given by equation (3.12)] The jump conditions (3.9) insure that
variations of the point 3 will be made consistent with O(y1 t) = 0 at the

point 3. Equatioms (3.9), (3.10), and (3.12) together restrict variations
of the points 1,2,3, and f.

The necessary optimizing conditions for this problem may now be obtained
by using the method of Lagrange multipliers to incorporate equations (3.8),
(3.9), (3.10) and (3.12) into the expression (3.7). If the usual definition
of the Hamiltonian function [equation (2.13)] is used, then the following
functional form is obtained.

2- £
Z* = Z + B + ¥y + viay + 76 +f [-H + Ajy;]lde + f [-H + Ayy4)dt . (3.13)
1 3+

where Xl Mg V4 and m are Lagrange multipliers.
b b4 b

Using the same arguments as in Section II, it is concluded that the
following Euler equations represent necessary conditions to be satisfied by
each optimal segment of the unrestricted trajectory shown in Figure 3.2,

State variable Euler Equation: 9H dxi
3v1 +3f = 0. (3.14)
Control variable Euler Equation: oH - o . (3.15)
Jdu
First Integral to Euler Equations: dH _ 3H
dt 3t . (3.16)

As before, the Weierstrass condition gives the further necessary condition that
to minimize Z* H takes on a maximum with respect to the control variable u
along each of the unrestricted segments.

As shown in Section II, the optimizing condition relating to the points
1, 2, 3, and f are obtained by requiring that dZ* = 0. This additional
requirement, using the shorthand notation of Section II may be written as
2- f
dZ + dB + u dy, + vyday + nd6 + [-Hdt + Xydy;] + [-Hdt + Aidyi] = 0. (3.17)
1 3+

In addition to obtaining the usual transversality conditions for the end

11



points, this latter condition is used to determine the changes in H and )4
in "jumping" from the point 2 to the point 3. Sufficient information is con-
tained in equations (3.14)-(3.17) to solve for a statiomary trajectory which
in turn is a candidate to extremize the functional (3.7). A trajectory
which extremizes (3.7) will also extremize the functional (3.1) subject to
the restrictions previously discussed. Several example problems are given
in Section IV illustrating the use of equation (3.17).

The Use of Parameters in the
Elimination of Restricted Arcs

Definition of parameters - The trajectory depicted in Figure 3.2 will
not necessarily be discontinuous in all of the variables y; and t. Whether
a given variable is discontinuous or not depends upon the nature of the
condition which produced the restricted arc. However all of the variables
can be made continuous again at the point 2 through the introduction of
parameters. If a set of parameters are defined to be equal to the value of
the discontinuity for each variable between the points 2 and 3,

Yi3 = ¥i2 T Pi » (3.18)
t3 - ty) = py , (3.19)

then the point 3 is in effect moved to the point 2 (Point 3 is eliminated)
by replacing the variables on the final arc by

t+p, . (3.21)

The resulting trajectory is thought of as being continuous as depicted in
Figure 3.3.

¥
UNRESTRICTED SEGMENTS /

FIGURE 3.3 CONTINUOUS OPTIMAL TRAJECTORY WITHOUT RESTRICTED ARC

12




The original problem may now be reformulated by introducing equations
(3.18)-(3.21) into the expression (3.7) to give

2(y31,95¢ ¥ Py byt TP T RO Vi YRy by )Ry

2- f
+f F(yi u,t)dt + / F(y:,L + p; u,t + po)dt, (3.22)
» L]

1 2+
or more simply

2- f
Z+ B+ / Fdt + [ Fdt . (3.23)
1 2+

In a similar manner equations (3.8), (3.9), and (3.10) may be rewritten in
terms of parameters to give

vy = 050y ooy u,t) , t<t, (3.24)
and vy = ¢>i(y1 + Pp,o* Y + pn’u,t + po) s t>t, (3.25)
ai(yiz + Py t2 + po) =0, (3.26)
t . ) =0, (3.27)
we( q’quspJ)

Equation (3.12) remains unchanged. If a Hamiltonian function is defined for
each arc as follows

12
= ) - 02
H (yi’u,t) Xi¢i(yl, yn’u,t) F(ylsu,t) . (3.28)
2f
= - + p. t + . .29
H (yi’u,t,pj) Ao Py, =¥y TPy Wt +p,) - Fly; Py Y p,). (3.29)
Then the following functional form,

* =
Z Z+ 8 + uewe + Ve, + 70

2- 4, . . £ . . . )
- + -H°" + A,y., + A,p,ldt 3.30
+.[1[ B+ Ay, + xjpj]dt ,[Z-E- I3 JPJ] (

may be used, as before, to obtain the necessary optimizing conditions for the
path and corner points.
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The necessary optimizing conditions - The Euler equations applicable
to the arc 1-2 are given by

State Variable Euler Equation: gﬂlz +3: =0 (3.31)
Iyi
Parameter Euler Equation: Aj =0 (3.32)
Control Variable Euler Equation: onl? =0
= = (3.33)
First Integral to Euler Equation: gglz _ onl2 3.34
dt ot (3.34)

The Euler equations applicable to the arc 2-f are given by

State Variable Euler Equation: gg?f + 3 =0 (3.35)
9y, i
i
Parameter Euler Equation: BHZf :
q : S 4. =0 (3.36)
ap 3
]
. 2f :
Control Variable Equation: oH
- 0 (3.37)

First Integral to Euler Equation: au2f - Qﬂ?f

3.38
dt at ( )

In addition, in order to minimize Z* the Weierstrass condition gives that
H12 takes on a maximum with respect to the control variable along arc 1-2
and H2f takes on a maximum with respect to the control variable along the
arc 2-f.

The optimizing conditions relating to the points 1,2,f are obtained using

the methods of Section II by requiring that dZ* = 0. This additional require-
ment, using the shorthand notation of Section II may be written as

dZ + dB + uedwe + vidai + ©d#o

2- £
+ [—ledt + Agdyy + )\jdpj] + [—HZfdt + Aydy; + )\jdpj] py = 0 (339
1
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An example problem illustrating the use of parameters and equations (3.39)
is presented in the following section.

SECTION IV
APPLICATIONS
Brachistochronic Examples in Aircraft Flight Mechanics
Equations of motion - The determination of brachistochronic or minimum
time trajectories for an aircraft present an interesting and useful class of
problems which are solvable using variational methods. The methods developed

in the previous section will now be applied to solve some examples which are
constrained by state variable boundaries.

Following the methods of Reference 6 the dynamical and kinematical
equations of motion needed for optimal trajectory analysis for an aircraft
of constant mass, without induced drag and confined to flight in a vertical
plane over a flat earth may be put into the following nondimensional form.

44 = r(u,n) - sin vy, (4.1)
dt
4€ - 4 cos v, (4.2)
dt
dn = y sin v, (4.3)
dt
where u = ¥X_ = non-dimensional velocity
Ve
= BX . .

g = =2 = non-dimensional range

vy '
n = 8- = non-dimensional altitude

vy2

= 8t . . .

T = 2 = non-dimensional time

Vr
r = r(u,n) = E%B = non-dimensional thrust minus drag
Ve T 2ZW_ . reference velocity

Po

g = acceleration of gravity at sea level
X = range

15




y = altitude

t = time

T = T(y,v) = specified thrust of the aircraft
D = D(y,v) = drag of the aircraft

W = weight of the aircraft (constant)

po = sea level or reference density

A = wing area of aircraft.

For the aircraft described by equations (4.1) - (4.3), the variables u,
£, and n represent state variables and y a single control variable. The
brachistochronic problem to be considered here is that of finding the minimum
time trajectory from a given initial state defined by,

u(Tl) =u , (4.4)

g(t;) =0, (4.5)

n(tl) =0, (4.6)
to a given final state defined by -

u('rf) = free , 4.7)

E(tg) = &f , (4.8)

n(tg) = ng , (4.9)

subject to certain other conditions which will result in restricted trajectories
to be discussed in what follows.

By setting this problem up as a problem of Mayer (F = 0, Z = tg-tj), the
H function defined in Section II becomes

H = ),(r-sin y) + Agu cos y + Aju sin vy , (4.10)

and the Euler equations as developed in reference 4 become (considering only the
class of trajectories where Ag # 0, see reference 7)

u Euler Equation: )\:1 = —)\u —g_:r; - Xg cos Yy - )\n sin vy , (4.11)
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£ Euler Equation: AE =0, (4.12)

n Euler Equation: A; = Ay %ﬁ. . (4.13)
. Apgu - Ay
y Euler Equation: tan y = _ka____. , g #0 . (4.14)
gY

The following is the first integral to the above Euler Equations
H = constant. (4.15)

Equations (4.1)~(4.3) and (4.11)-(4.15) must be satisfied for the unrestricted
portion of the total optimal trajectory for the next three example cases.

The brachistochrone problem with an altitude constraint - By setting
r = 0, the problem in the preceeding section reduces to the well-known
Brachistochrone problem. This problem will be solved in this section with
the following altitude inequality constraint

n>n (4.16)

c*

It is assumed that an attempt to solve this problem by means of equations
(4.1)-(4.15) will violate the constraint as shown in Figure (4.1). Hence the
optimal solution will be composed of both restricted and unrestricted arcs also
depicted in Figure (4.1).

OPTIMAL TRAJECTORY WITH €
A RESTRICTED SEGMENT

(4 7. L 7L
UNRESTRICTED OPTIMAL TRAJECTORY

FIGURE 4.I THE BRACHISTOCHRONE

The methods of Chapter 3 may thus be used to eliminate the arc 2-3. Following
the methods of this chapter the various functional quantities given in the
expression (3.13) for Z* must first be determined. Since this is a minimum
time problem formulated as a problem of Bolza we have

Z= 18 , (4.17)

17



B=0 . (4.18)

The . functions involving the endpoint conditions for this problem are
obtained by rewriting equations (4.4)-(4.9) as follows,

vy = 11=0, (4.19)
wz = u; - comstant = o, (4.20)
¢3 = 51 =0, (4.21)
by 0y =0, (4.22)
5 = ¢ - constant = 0 , (4.23)
Yg = ng - constant = 0 . (4.24)
The a, functions relating the "jumps" in the state variables from the point

2 to § are obtained from the equations of motion by observing that along the
constraint the control is given by y = 0. Thus the equations of motion can be
integrated to give

a; Tug-uy = o, (4.25)
0y = By = By - uy(ty - T,) =0, (4.26)
0.3 = 713 - nz =0 . (4.27)

Any alternate way of expressing these results is acceptable for the material
which follows. To change the form of these expressions merely changes the
algebraic manipulations to be used later on.

The function 6 is obtained directly from the equation of constraint to give

e = Ny = N = 0. (4.28)
Thus following the procedures of Section III, dZ* may be written as follows:
* =
dz de + uldrl + uzdul + u3d€1 + u4dnl + usdgf + u6dnf

+ V1 (du3 - duz) + v, d€3 - dgz - u2d13 + u2dt2 - (13 - 12) du2

92—
+ vy (dn3 - dn2) + ndn2 + [—Hdr + Audu + é dt + Andn]l
f
+ [-Hdr + A du 4+ A.dE + A _dn =0 . (4.29)
b & L ¥
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The method of Lagrange multipliers allows each of the deviated quantities
to be considered as independent. Hence, in order to have the above entire
\ expression equal zero each of the following equations must be satisfied.

Point 1  drt: up +Hy =0, (4.30)

du: g = Ay1 =0, (4.31)

dg: Mg = AEl =0, (4.32)

dn: M4 = App =0 (4.33)

Point 2 dt: Vouy, — Hy_ =0, (4.34)

i du: -vy —vz(r3 - Tz) + xuz_ =0, (4.35)
F d&: -vy + XEZ— =0, (4.36)
dn: ~V3 + 7+ xn2- =0 . (4.37)

Point 3 drt: -voup + Hgy =0, (4.38)

du: vy - Xu3+ =0, (4.39)

dg: Vo = Ag3g = 0, (4.40)

dn: v3 = Apyp = 0. (4.41)

Point £ drt: 1-H =0, (4.42)

du: Agg = 0 s (4.43)

de: Mg +'X€f =0, (4.44)

dn: Hg * Anf =0, (4.45)

Equations (4.30)-(4.33) yield no usable information, except that the initial
values of H,A ,A_, and A cannot be directly determined from the condition (4.29)
and may have %o ie guesé%d initially.

Equation (4.34) combined with equation (4.38) yields
(4.46)

H,, =H

3+ 2- -

Combining this result with equation (4.42) and equation (4.15) it is seen that

H=1 (4.47)
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along each of the unrestricted portions of the trajectory.
Equation (4.35) combined with equation (4.39) yields

A = A

w3+t - v, (153 =1, (4.48)

u2-

Since H = 1, the multiplier v, may be evaluated from equation (4.34) to give
vy = l/u2 . Hence equation (4748) may be written as:

_ (t3 = t2)

Aa3+ = Auo- (4.49)

42
Equation (4.36) combined with equation (4.40) and the fact that v, = l/u2
yields
Mgy = AEZ- = 1/uy . (4.50)
Equation (4.37) combined with equation (4.41) yields

Xn3+ = >\n2_ + 7. (4.51)

Equations (4.44) and (4.45) yield no information directly as to the final
values of Ay and A,. Equations (4.46), (4.49) and (4.50) and (4.51) give
the "jumps" "in H, A, Ags and Ap in moving from point 2 to point 3.

The solution to the problem may now be obtained as follows: the condition
H = 1 written out and solved for xu becomes

A = An u sin y + Ag u cos y -1 ) (4.52)

sin vy

When the above expression for A, is substituted into the control variable Euler
equation (4.14) this equation reduces to

cos y = Agu . (4.53)

Thus the optimal control depends only on one of the Lagrange multipliers xg
which in this case is a constant (equation 4.12). From equation (4.50)
Ag = 1/uy , hence

cos vy, = 1. (4.54)
Since u, = uj in this case it immediately follows that
cos y3 = 1. (4.55)

Thus the entrance and exit conditions to the restricted arc for this problem
reduce to "tangency" conditions. That is, the unrestricted trajectory joins
the restricted trajectory in a smooth fashion.
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A numerical solution to the problem can now be obtained. [Note: with
r = 0, the equations (4.1) and (4.3) may be combined and integrated using
the initial conditions (4.4) and (4.6) to yield the familiar result

2

%uz tn= %ul . Along the line n = n, , u is known and consequently A
can be determined. Hence the optimal solution can be obtained analytiéally.
However, for the purpose of illustrating a general numerical method, it will
be assumed that this result is not available.] A guess is first made for Ag.
The control as determined by equation (4.53) is then substituted into equations
(4.1)-(4.3) [with r = 0] and these equations are integrated until the con-
straint n = n, is met. If Ap = 1/ug at this point, then the initial trajectory
computed is optimal. If not, then a new choice must be made for A, until the
condition xg = 1/up is satisfied at the point 2. When this condition is
satisfied a guess can then be made for tj which determines the point 3. A
"{ump" to point 3 may now be made by calculating u,, £q5 and n, from
equation (4.25)-(4.27) and A 3+ from equation (4.58) Evaluation of these
quantities allows continuatign of the integration process and if the final
fixed endpoint is intercepted with the resultant trajectory, the proper choice
for t3 was made and the problem is solved. If not, t3 must be adjusted until
the end point is intercepted with the final trajectory. Variations of this
procedure can be made by using the tangency condition instead of the condition
AE = 1/u2.

The use of parameters in the previous application - The restricted
brachistochrone problem of the previous section may also be solved by using
parameters to eliminate the restricted sub arc. According to equations (4.25)
and (4.27) the variables u and n are continuous from point 2 to point 3. The
variables £ and t which have a discontinuity between points 2 and 3 may be
made continuous by introducing the following parameters; let

Ty = Ty, =Py » (4.56)
€3 - & =Py - (4.57)

With the introduction of the above parameters the point 3 is effectively
eliminated and the point 2 may be thought of as a cusp or '"reflected"
extremal from the line n = n, as shown below.

M
]

21
FIGURE 4.2 CONTINUOUS BRACHISTOCHRONE WITHOUT RESTRICTED ARC
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Following the methods of Section III, for this case

Z = e + Py > (4.58)

and B=20. (4.59)

The we functions involving the endpoint conditions are written as

vy =1, =0, (4.60)
by=u -C=0, (4.61)
by =& =0, (4.62)
v, =n =0, (4.63)
b= E +Dpy, - C=0, (4.64)
bg=ng-C=0. (4.65)

The parameters p, and p, for convenience in what follows are assumed to be
evaluated at point 1 alghough the subscripts have been omitted.

The o, functions which previously were related to the "jump" in the state
variagles between the points 2 and 3 are now, with the use of parameters,
relations in terms of the state variables at the point 2 and the parameters.

“3:=0. (4.66)
0,2 = p2 - uzpo =0 . (4.67)
oy =0, (4.68)

The function 6 remains unchanged and is given as
8 = n, = Ng= 0. (4.69)

Since the dynamical equations of constraint do not explicitly contain either
E or T the Hamiltonian functions for each of the arcs 1-2 and 2-f are identical
and are equal to the one defined in the previous section, namely

H=-A siny+ Aucos y+ AU sin v . (4.70)
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Thus, the functional form for dZ* may be written as follows

* =
dz de + dpo + uldtl + uzdu1 + u3d£1 + u4dnl + u5(dEf + dpz) + u6dnf

+ \)z(dp2 - u2dp0 - poduz) + ﬂdnz + [—HdT + Xudu + A

A d
Py pZ]

For the above expression to be equal to zero each of the following equations
must be satisfied:

dg + xndn + Xp dpO

& 0

2- £
+ [-Hdt + A du + A 88 + ) dn + xpodpo + )\pzdpz] =0 (4.71)

2+

+

1

Point 1 dt: My + Hl =0 , (4.72)
du: My = Aul -0, (4.73)
dg:  ug - Agl =0, (4.74)
dn: Wy = Anl =0 . (4.75)
dp,: 1 - v, u, = A =0, (4.76)
0 272 Po1
dp,: u. + v, - A =0, (4.77)
2 5 2 Pyy
Point 2  dt: _HZ- + H2+ =0, (4.78)
du: ~V,Pg + kuz— - Xu2+ =0, 4.79)
dg: Agz— - A€2+ =0, (4.80)
dn: 7w + An2— - An2+ =0, (4.81)
dp,: A - A =0 (4.82)
0° "Pop-  Po2+
dp.: X - A =0 (4.83)
2" Pyy-  Pos ’
Point £ dr: 1 - Hf =0, (4.84)
du: kuf =0, (4.85)

23



dg: Mg + ng =0, (4.86)
dn: Mg + Anf =0, (4.87) .
de: Apof =0, (4.88)
dp2: Apzf = 0. (4.89)

In addition to the state variable Euler equations (4.11) - (4.14) which are
valid on each unrestricted trajectory, the following parameter Euler equationmns
are applicable (valid for each unrestricted trajectory).

dx
P
=0. (4.90)
dt
|
dx ‘
P2 4.91 |
dr =0. (4.91) ‘

Since Ap and Ap are constant on each subarc, continuous at point 2 and zero

0 2
at the final point, then they are both zero throughout and equations (4.76) and
(4.77) reduce to

(4.92)

Mg = = v, . (4.93)

It is now easy to show that the results obtained using parameters are identical
with those of the previous section. As they stand, equations (4.72) - (4.75) are
identical with equations (4.30) - (4.33). Equation (4.78) yields directly the
equivalent combined result of the previous section given by equation (4.46). If
this result is combined with equation (4.84), the result is once again obtained
that

H=1, (4.94)

for each portion of the unrestricted trajectory. By combining equation (4,92) with
equation (4.79) the expression

= - PO 4.95)
Xu2+ Au2— o (
2
is obtained which is equivalent to the combined expression (4.49) of the previous
section. Combining the fact that d) with equations (4.86) (4.80) and (4.93)
= 0
dt
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yields

N (4.96)

which is equivalent to the combined result (4.50) of the previous section.
Equation (4.81) yields directly the equivalent combined result (4.51) and
finally equations (4.85) - (4.87) are identical with their counterparts
equations (4.43) - (4.45).

Since they yield equivalent results, the methods used to solve this
problem are nearly identical. As before, using a numerical integration process,
the point 2 is obtained by satisfying the condition A, = 1/u, . At this point
a guess is now made for p, (instead of t previously)gand p, is computed by
means of equation (4.67). Integration og
condition may now be continued by using the condition §2+ = 52_ + Py with the £
differential equation.

Aircraft flight mechanics with a velocity constraint. The problem tQ be
considered in this section is the more general case for which r = K - C_ u".
In addition, the aircraft is such that it must satisfy the restriction.

u>u_ . (4.97)

It is assumed that an attempt to solve this problem by means of equations
(4.11) - (4.15) will violate this constraint so that the optimal solution will
be composed of both restricted and unrestricted arcs as shown below.
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FIGURE 4.3 MINIMUM TIME RESTRICTED AIRCRAFT TRAJECTORY

The methods of Section III can be used to eliminate the arc 2-f. In this case

Z=1 (4.98)
and B=0, (4.99)

The we functions involving the endpoints for this problem are written

25
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as follows:

Y51, =0, (4.100)
Y 2u; -C=0, (4.101)
¢3 B El =0, (4.102)
b,=n, =0, (4.103)
ws = gf -C=0, (4.104)
Vg 2N -C=0. (4.105)

The o, functions relating the "jumps" in the state variables from the point
2 to f are obtained from the equations of motion by observing that u' = O along
the constraint so that equation (4.1) can be solved directly for sin Yo to give

u 2
pc °
Equations (4.2) and (4.3) can now be solved directly for the jumps in £ and n.
The o, functions are written as follows:

sin Yo = K-2¢C (4.106)

i
a; = ug - u, = o, (4.107)
a, = Ef - &2 - U, cos Y, (Tf - 12) =0, (4.108)
@y = Ne = Ny = U, sin ¢ (Tf - T2) =0 . (4.109)

The function 6 is obtained directly from the equation of constraint to give
8 = u, - U, = 0. (4.110)

Thus the function dZ* may be written as follows
* =
dz drf + uldtl + u2du1 + u3d51 + uadnl + usdgf + u6dnf

+ \)l(duf - duz) + vz[dgf - d€2 - u, cos YC (drf - dTZ)]

+ vy [dnf - dn2 - U sin Yo (d'rf - de)] + 1rdu2
92—
+ [—HdT + A du + XA _dE + A dE] =0 ., (4.111)
u 1 n 1
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Considering each of the different differentials as being independent yields the

following results:

Point 1 dt: ¥y + Hl =0, (4.112)
du: Hy = Aul =0, (4.113)
dg: My - Agl =0, (4.114)
dn: My - Anl =0, (4.115)
Point 2 dt: Vyu. €OS Y, + Vau. sin Yo - HZ- =0, (4.116)
du: -vy + T+ qu— =0, (4.117)
dg: -v, + AEZ— =0, (4.118)
dn: ~Vvq + AnZ— =0, (4.119)
Point £ dt: 1 - Voun €OS Y, = Vau sin Yo = o, (4.120)
du: v, = o, (4.121)
de: Hs + vy = 0, (4.122)
dn: Mg + vy = 0. (4.123)

As in the previous example, equations (4.112) - (4.115) yield no usable
information. Combining equations (4.116) with (4.120) yields

H,=1. (4.124)

H=1 (4.125)

along the unrestricted portion of the trajectory. Combining the result of
equation (4.121) with equation (4.117) yields

)\ = =T (4.126)

u2-
Equations (4.118) and (4.122) combine to give

>\g2_ = —]JS b

(4.127)
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and equations (4.119) and (4.123) combine to give

Mg = Mg - (4.128)

If equations (4.118) and (4.119) are substituted into equation (4.120) the
following result is obtained

1 -2 Ug €Os Yo - A

£2-Uc u, sin Yo = 0. (4.129)

n2-C

The solution to the problem considered in this section may now be obtained.
The Euler equations (4.12) and (4.13) in this case reduce to

AE = constant = a , (4.130)

Xn = constant = b . (4.131)
Equation (4.129) may be written as

au, cos Y, + buC sin Yo = 1. (4.132)

Since H = 1 along the unrestricted trajectory, the first integral expression
(4.15) may be written as follows

Au (r - sin y) + au cos y + bu sin y = 1 . (4.133)

Now since this expression must hold throughout the unrestricted trajectory, in
particular, it must hold when u first reaches the value Yo+ Under such circum-
stance, the above equation reduces to

2
A, [K = Cpu.” -

C sin Yo ] + au

c ©95 Y,_ + buC sin Yy = 1 (4.134)

This equation will satisfy the requirement given by equation (4.132) for joining
the restricted segment provided that

(4.135)

Thus, as with the preceding example the joining condition is a tangency condition.
In this case, condition (4.135) is the most convenient one to use for determining
the location of point 2. The unrestricted trajectory may be generated using

the methods of reference 6. When the boundary u = u, is met, condition (4.135)

1s used to determine if the choices made for the inigial conditions were proper.
With the correct choices for the initial conditions, since the restricted seg-
ment is also the final segment, if this segment passes through the desired
endpoint, then the final time t_. can be calculated from equation (4.108) or
(4.109) and the problem is solvéd.
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An Example With A Second Order Constraint

Equations of constraint - An n th order constraint is defined as

follows: For a given inequality constraint of the form

S(y;8) 20, (4.136)
n
if — is the first derivative of S which explicitly contains the control
n n
variable (upon substituting the dynamical equations of constraint into ___.)
n
dt

Then S is called an n th order constraint.

An illustrative example problem involving a second order constraint has
been worked out by Bryson who applies a general method, which requires the
integration of the Euler equations along the restricted arc. The following
analysis shows that this same problem can also be solved by eliminating the

restricted arc as discussed in Section III.

The example problem is formulated as follows: minimize E

the following differential equations of constraint, £

E=1a%,
2
v=a s
X=v .

and the inequality

S=x-42<0.

subject to

(4.137)

(4.138)

(4.139)

(4.140)

The initial values of E, v, X, and t as well as the final values of x, v and t
and x and a
constraint

are given. In this case there are three state variables E, v,
single control variable a, leaving one degree of freedom. The
equation (4.140) is of second order since

S=x=v=a,

is the first derivative of S in which the control variable "a"

If this problem is set up as a problem of Mayer (z = E_ ,
the Hamiltonian function as defined in Section II becomes

12
H=Xx_=2 +)xat+ i v.
E 2 v X
The Euler Equations with this H function are as follows:

E Euler Equation: XE =0,

(4.141)

appears.

F

0) then

(4.142)

(4.143)
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v Euler Equation: A= =)

b= A (4.144)

x Euler Equation: Ax =0 . (4.145)
A

a Euler Equation: a= - X! . (4.146)
E

With the following first integral to the Euler Equations

H = Constant . (4.147)

Restructed solution - It is now assumed that an attempt to solve this

problem by means of the above equations with a given set of initial and
final conditions will violate the inequality constraint as shown in

Figure 4.4. Hence the optimal solution will be composed of both restricted

and unrestricted arcs.

- N ICTED
- ~ \f UNRESTR

FIGURE 4.4 RESTRICTION DUE TO SECOND ORDER CONSTRAINT

Following the methods of Section III, the arc 2-3 may now be eliminated. 1In
this case
z = Ef , (4.148)
B=20. (4.149)

The following initial and final conditions will be chosen for this example

b=t =0, (4.150)
¥, =H; =0, (4.151)
Vg =V -1=0, (4.152)
b, 2%, =0, (4.153)
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b=t -1=0, (4.154)
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The "jumps" in the state variables from the point 2 to 3 are obtained from the

dynamical equations of constraint by observing that along the constraint the
control a =0 .,

ay = E3 - E2 =0, (4.157)
@, = Vy -V, = 0o, (4.158)
eq = X3 = X, = 0. (4.159)

In this case in order to make variations of point 2 consistent with the
boundary, two conditions must be satisfied.

61 =Xy -4 = 0, (4.160)

6, = v, = 0. (4.161)

The dZ* function becomes

*
dz dEf + uldt1 + uZdEl + u3dvl + uédx1 + u5dtf + u6dvf + u7dxf

+ vl(dE3 - dEZ) + \)z(dv3 - dvz) +'v3(dx3 - dx2) + nldxz + nzdv2
2..
+ [—Hdt+>\dE+)\dv+)\dx]
E v X 1
£
+ [—Hdt+)\dE+)\dv+)\dx] =0. (4.162)
E v X 3+

By requiring that each of the differential expressions be equal to zero results
in:

Point 1 dt: My + Hl =0, (4.163)
dE: My = AEl =0, (4.164)
dv: My = Avl =0, (4.165)
dx: My = Axl =0, (4.166)
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Point 2 dt: —H2_ =0, (4.167)
dE: -V, + XEZ- =0, (4.168)
dv: v, + Kv2— + Ty = 0, (4.169)
dx: vy + sz_ + = o, (4.170)
Point 3 dt: H3+ =0, (4.171)
dE: V) = Agay = 0, (4.172)
dv: v, Av3+ =0, (4.173)
dx: vy - Ax3+ =0, (4.174)
Point 4 dt: Mg = Hf =0, (4.175)
dE: 1+ Agg = 0 s (4.176)
dv: He t A e = 0, (4.177)
dx: Myt A e = 0. (4.178)

Equations (4.163) - (4.166) yield no usable information. The initial values
of H, XE’ AV, and Ax cannot be determined directly from condition (4.162).

Since H is constant along each of the unrestricted trajectories, equations
(4.167) and (4.170) require that

H=0 (4.179)

along arcs 1-2 and 3-f. Equations (4.168) and (4.172) may be combined to
yield

A = A . (4.180)

Equations (4.169) and (4.173) may be combined to yield

= .181
Xv3+ sz_ + oM, . (4.181)

Equations (4.170) and (4.174) may be combined to yield

= .182
A3 Aggo ¥ 71y - (4 )
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Equations (4.175), (4.177) and (4.178) yield no usable information. Equation
(4.176) gives directly the useful result A = -1 ., Combining this result
with equations (4.143) and (4.180) yields

AE = -1 (4.183)

along each of the arcs 1-2 and 3-f.

The solution to the problem may now be obtained by integrating the Euler
equations in conjunction with the equations of motion. According to the
Euler equation (4.145) X_ is a constant along each of the arcs 1-2 and 3-f.
If b is this constant algng the first arc

A, = Db, 0<t<t (4.184)

2

Then according to equation (4.182) along the second arc the constant is
b + 7, or alternately

Ay =d . t3_<_t_<_1 (4.185)

This information may now be used to integrate the Euler equation (4.144) to
give

A
v

-bt + Ay 0<tx<t (4.186)

1° 2

A

v -d(t - t3) + Av

t,£t<1 (4.187)

3+ 3
These results plus equation (4.183) may now be substituted into the Euler
equation (4.146) to yield the optimal control law along each of the unre-
stricted sub arcs.

a= )\vl - bt , 0<t=<t, (4.188)
a-= AV3+ - d(t - t3) - tyg2ts 1 (4.189)
Substituting A_ = a, A,.= -1, and A_ =b or A_ = d into the H function equation

(4.142) with the appropriate optimaf control équation (4.188) or (4.189)
yields

-1 - 2
H = 0 ()‘vl bt)” + bv 0<t< t2 (4.190)
1 2
H= > [xv3+ - d(t - t3) ] + dv t3 <t<1 (4.191)

Since H = 0 throughout the unrestricted arcs, the following results are
obtained by setting H = 0 at:

= 1] xz = -2b (4.192)

Point 1 [t =0, v vl

1
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A
Point 2 [t=t,, v,=0] t, = _%l (4.193)

[Note: From equations (4.158) and (4.161) vy =Vy = 0]

Point 3 [t

Il
T

0] A =0 (4.194)

2
-1] .;_ [-d(1 - t)] -d=0 (4.195)

(9%]

-
<

[9%]
[}

Point 4 (t

n
'—l
<

n

By substituting equation (4.193) into equation (4.188) and equation (4.194)
into equation (4.189) it is seen that the optimal control just previous to
the constrained arc at the point 2 is zero and likewise at the point 3.

With the optimal control law given by equations (4.188) and (4.189)
equations (4.138) and (4.139) may be integrated to yield:

2

=1 -
v ETY ()‘vl bt)” , 0<tzt, (4.196)
= -4 (¢ -t)?
v 5 (t t3) s tyst <1 (4.197)
3 A
=1 - vl
x = (A, =BT+ =, 0ttt (4.198)
6b 6b
=g - 9t - 3
X 6(t t3) . tg<ts 1 (4.199)
A1
Applying the condition that x = £ at t = ¢t, = 22 to equation (4.198)
yields: b
b=-_.2 (4.200)
92
Thus from equation (4.192)
A= -2, (4.201)
vl 34
and from equation (4.193)
t, = 32 . (4.202)

Applying the condition that x = 0 when t = 1 to equation (4.199) yields

d=_6%_ . (4.203)
(1t




Thus from equation (4.195)

HIMRS S R T

. ty = 1=73 . (4.204)
- The time spent on the restricted arc is given by
t,-t, =1-68 . (4.205)

3 2

It is noted from this equation that the time spent on the arc goes to zero
when £ = 1 . It is concluded that for 0< g <1l afinite length of time

i 3

will be sgent on the restricted arc. The optimgl solution in this case is

g given by the following sets of equations.
3 For 0 < t < 3% :
: a=-2(1-L (4.206)
; 32 3%
3
- 2 t
= E=<p-(1-L
- 97[ a -3 ] (4.207)
7 a-=t 2 (4.208)
TN T '
X =2 [1- 1-L) ] (4.209)
z 3%
i For 32 <t <1- 32
a=0 (4.210)
i
E=2_ (4.211)
9%
‘3 v =0 (4.212)
l X =1 (4.213)
For 1 - 32 <t <1
2 1-t

= - & (1 -4t 4.214
t 2 32 ( 3% ) ( )
3
E=2_ [1 + (1 - 1-t) ] (E = 4/92) (4.215)
i [} 34
I
- _ _l-t 4,216
; v (1 m ) ( )
3
x=2 |1-(-21t) (4.217)
. 3%
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Unrestricted solution. An interesting feature of this problem is the
fact that 2 must be greater than 1/4 in order for the resultant trajectory
to be unrestricted. This is easy to show by simply integrating the con-
straint and Euler equations without imposing the conditions given by
equations (4.167) - (4.174). [Points 2 and 3 do not exist]

The endpoint condition (4.176) requires that’k = -1 as before, and
the Euler equation (4.145) requires that A be consgant throughout the tra-
jectory. The optimal control equation thef becomes

a=-xt+2 (4.218)
x v

1

The constraint equations (4.138) and (4.139) may now be integrated to yield

A
- = - X
v - v Avlt 5 s (4.219)
A A
x-x =t+. vl lx o, (4.220)
1 2 2
Applying the boundary conditions that at t = O, vy = 1, X, = 0, and at t = 1,
v, = -1, x. = 0 , yields the results
f f
A =0 (4.221)
X
Avl = =2 (4.222)

Thus the optimal solution is easily obtained in this case and is given by the
following set of equations

a=-2 , (4.223)
E=2t , (4.224)
v=1-2t, (4.225)
x=t(l-1t). (4.226)

It is noted from equation (4.226) that the maximum value of x is 1/4. Hence
if ¢ > 1/4 the inequality constraint will not be encountered.

Reflected solution. For 0 < & < 1/6 a restricted solution is obtained,
and for % > 1/4 an unrestricted solution is obtained. Hence it is con-
cluded that between %= 1/6 and % = 1/4, the extremal curve is a reflected one.
For a reflected extremal there is no point 3 since @) = @y =0y = 0. Hence
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the condition yielding the transversality corner conditions reduces to

X =
dz dEf + uldtl + uszz + u3dv1 + u4dx1 + usdtf + 1_16dvf + u7dx

£
2_
+ mydx, + mydv, + [ “HAE + AdE + A dv + A dx ] .
£
+ [—Hdt+>\dE+)\dv+>\dx] 0. (4.227)
E v X 24

The endpoints conditions are the same as before and are given by

equations (4.163) - (4.166) and (4.175) - (4.178). The conditions at
point 2 become

Point 2 dt: —H2_+ H2+ =0 |, (4.228)
dE:  Apy = Agy, =0, (4.229)
dv: xvz_ - Av2+ tm, = o, (4.230)
dx: T + sz_— Aoy = 0. (4.231)
As before, it is concluded that,
Ag = -1. (4.232)

According to equation (4.145) lx is a constant along each of the arcs 1-2
and 2-f. If b is this constant along the first arc

A =b 0<t<t, (4.233)

Then according to equation.(4.231) along the second arc the constant is

b + ™ or alternatly

A =d . t,<t<l (4.234)

This information may now be used to integrate the Euler equation (4.144) to
give

A, = -bt + A1 0<tc=<t, (4.235)
xv = -d(t - t2) + xv2+ . t2 <tx<1 (4.236)
These results plus the result A_ = -1 may now be substituted into the Euler

equation (4.146) to yield the optimal control law along each of the unre-
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stricted sub arcs

a= le - bt , 0<t 2t (4.237)

o
[l

p\ - d(t - tz) . t

v2+ tx1 (4.238)

2

The H function with the proper optimal control law for each arc becomes

=1 - bt)?
H=2 Oy - bO)" +bv 0<tcxt, (4.239)
1 2
H=o Dy -dlt-t)] +vd ty<t<l1 (4.240)

Applying the condition (4.228), making note of equation (4.161) yields

= - . l
Ao = Ag1 T bEy (4.241)

If the control law for each segment 1-2 and 2-f is substituted into the

equations of constraint (4.138) and (4.139) and these equations integrated,
the resultant equations evaluated at point 2 yield

bty 4,242

1+ A1to - = o , (4.242)
1 _ 1y, 2y _
tz(l + EAvltZ E.bt2 ) L, (4.243)
and evaluated at point f yield

- -l - )2 =
1+ Av2+ (1 t2) Ed(l tz) 0, (4.244)
p+d -ty -laa-c)d=0. (4.245)

2 v2+ 2 6 2

The five equations (4.241) - (4.245) may now be solved for the five unknown

constants, t2, Avl’ Av2+’ b, and d.
t, = 1/2 , (4.246)
Avl = -8(1 ~ 38) , (4.247)
Av2+ = 4(1 - 6L) , (4.248)
b= ~24(1 - 42) s (4.249)
d = 24(1 - 41) . (4.250)
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For O : t : t, =t -1
2 = 83773
a=-8(1 - 38) + 24(L - 40t , (4.251)
v=1-8(1-32)t+12Q - &)t (4.252)
X =t - 4L - 30)t% + 4@ - 40)E> (4.253)
For %-: t : 1
a=-8(1 - 32) + 24(L - 4)(L - t) , (4.254)
ve=1-8(1-30-¢t) +12(1 - 42)(L - )% , (4.255)
x=1-t-4(1-30-02%+40-40A-1)° , (4.256)
E . =8(- 6%+ 120%) . (4.257)

These results agree with reference 8.

Examples in Rocket Flight Mechanics

ase I —— Optimal staging with coast periocds - In a recent article by
Mason” a variational method for determining the optimal stage sizes for
multistage rockets is presented. In addition to the optimal steering program
this method simultaneously yields the optimal propellent and structure
weights for each stage. The following example illustrates how the methods
of Section III may be applied to the problem discussed by Mason with the
additional condition that a finite coast period takes place after each stage
allowing time for the burned out stage to be discarded.’

Consider a multistage rocket vehicle in flight above the atmosphere
with constant thrust and fuel flow rate over a flat earth with uniform
gravity as shown below

y T

FLIGHT PATH

— e ———=— HORIZONTAL REFERENCE LINE

FIGURE 4.5 APPLIED FORCES ON ROCKET
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The corresponding equations of motion are:

G =L

u = — cos x , (4.258)
v = %-sin X - g , (4.259)
X=u , (4.260)
y=v , (4.261)
m=-g , (4.262)

where g is the acceleration of gravity at the surface of the earth and T

and B are given constants which may have different values for different
stages. The velocity components in the x and y directions are u and v and

m is the mass of the rocket. The state variables x, y, u, v, and m are
subject to the single control variable x which is the direction of the thrust
with respect to the x axis. This leaves one degree of freedom for optimal
control.

It is assumed that the trajectory consists of three thrusting stages
separated by coasting periods of finite length. This assumption will require
that the optimal solution has restricted segments which are depicted in
Figure 4.6, This problem is of type 3 as discussed in the beginning of
Section III.

/—— THRUSTING
/— STAGING
2 COAST

FIGURE 4.6 MASS CHANGES FOR A MULTISTAGE ROCKET

The structural weight of each stage will be assumed proportional to
the fuel weight and, hence, the burning time of that stage (since the fuel
flow is constant). The quantity to be maximized 1s the payload.

If this problem 1s set up as a problem of Mayer (Z = me, F = 0) then
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the Hamiltonian function as defined in Section IT becomes

. T T
= - + — ai - - .
H Au — €os X Av(m sin x - g) + xxu + Ayv AmB

(4.263)

The Euler equations applicable for arcs 1-2, 4-5, and 7-8 are as follows

u Euler Equation A= -2 >
u X

v Euler Equation A= -A s
v y

x Euler Equation A =0 s

y Euler Equation A =0 ’

y
i = n L P
m Euler Equation Am Au 7 cos x + Av 5 sin yx s
m m
p\
x Euler Equation tan x = Xl .
u

With the following first integral to the Euler equations

H = constant .

(4.264)
(4.265)
(4.266)
(4.267)

(4.268)

(4.269)

Following the methods of Section III the arcs 2-4, 5-7 and 8~f may now

be eliminated. 1In this case

(4.270)

(4.271)

(4.272)

(4.273)

(4.274)

(4.275)

z=m ,
g =0.
The following conditions are applicable at the various points along the tra-
jectory.
b=t =0,
wz =u - c=0,
w3 =vy - C=0,
b, =% =0,
b =y, =0,

(4.276)

(4.277)
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4;=m, -m, +kt,=0, (4.278)
bg =my, - mg +ky(tg - t,) =0, (4.279)
b =m - mg + ky(tg - €)) =0, (4.280)
Yig=uv -C=0, (4.281)
gy =ve-C=0, (4.282)
V=¥, -C=0, (4.283)
V3=t -t -C=0, (4.284)
by, =t; - ts-C=0. (4.285)

The "jumps" in the state variables (other than mass which has already been
specified) from the points 2-4, 5-7 and 8-f may be obtained from the dynam-
ical equations of constraint by setting T = 0 (which in effect yield a new
set of dynamical equations with no control) to yield

a4y =y, - uy = 0, (4.286)
@, =V, =V, + g(t4 - tz) =0, (4.287)
@y =X, Xy - u2(t4 - t2) =0, (4.288)
a, =y, - —v(t—r:)+l (t—t)2=0 (4.289)
474 TV T VN T R T B T R R
as =u, -y = 0, (4.290)
Ge = Vg = Vg + g(t7 - tS) =0, (4.291)
0y = Xy = X - uS(t7 - tS) =0, (4.292)

-y -y, - - 1 — ) = )
ag =¥y = ¥5 - vs(t; ~ t) + L gt -t =0, (4.293)

ag = uf - u8 =0 . (4.294)
@19 = Vg " Vg = 0, (4.295)
a1; = Xg -~ Xg =0, (4.296)
@19 =Yg =Yg = 0. (4.297)




In this case the function 6 is identically zero. By forming Z* and setting
dZ* = 0, the following condition in abbreviated notation is obtained:

P LR
L]

dz* = dZ + n. dy + vidai + [ -Hdt + )\idyi ] i—

j 5~ 8-

+ [—Hdt + A,y ]4+ + [—Hdt + xidyi} . =0 . (4.298)
’ This condition yields the following results
Point 1 dt:  u, +H =0, (4.299)
3
: du: My = Ay = o, (4.300)
dv: Hy = Avl =0, (4.301)
dx: Hy = Xxl =0, _ (4.302)
dy: Mg = Ayl =0, (4.303)
dm: Mg = kml =0, (4.304)
f Point 2 dt: u7k1 - vzg + v3u2
+ \ [ A\ g(t4 - tzﬂ - Hy3 T HZ— =0, (4.305)
du: -vy = v3(t4 t2) + Au2— =0, (4.306)
; dv: v, - va(t4 - tz) + sz_ =0, (4.307)
% dx:  -va A, = 0, (4.308)
; dy: v, + Ayz_ =0, (4.309)
dm: -uy + Apo- = 0. (4.310)
Point 4 dt: —ugky + vog = vau, + v, [ -vy +g(t, - ty) ]

+ U4 +H, =0, (4.311)
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Point 5

Point 7:

Point 8

du:

dv:

dx:

dy:

dt:

du:

dv:

dx:

dy:

dt:

du:

dv:

dx:

dy:

dm:

dt:

du:

Vi T >‘u4+ =0
Vo T Av4+ =0
v3 - Ax4+ =0
vy~ Ay4+ =0
My 7 Apge = O

k, - V8 + v

Vs = vy(ty -
Ve = vglty -
-V, + AxS— =0
~Vg + AyS— =0
“Ug + Am5— =0
—u9k3 + Vg8 -
VS B >\u7+ =0
Ve ~ A7+ = 0
V3 T A =0
Vg ~ Ay7+ =0
Hg ~ Am7+ =0
u9k3 - HS— = 0
~Vg + Au8— =0

745 T vg L vg

T ¥y T sl T
t) + A =0
t5) + AVS— =0
’
9
vou, + v

7¥5 + vg [ -vg +g(t, -

-y, tH

— g(t7 —_

7+

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

312)

313)

314)

315)

316)

317)

318)

319)

320)

321)

322)

323)

324)

325)

236)

327)

328)

329)

330)



dv: v, + A =0, (4.331)

: 10 v8-

£ dx: v tAg =0, (4.332)

- dy: “Vi9 + Ay8— =0, (4.333)
dm: g+ A g =0 . (4.334)

i Point f du: Y10 + Vg = 0o, (4.335)
dv: M1 + Vi = 0, (4.336)

" dx: Vi = 0, (4.337)
dy: My ¥V = 0 (4.338)
dm: 1+ug=0. (4.339

Equations (4.299) - (4.304) yield no wusable information. Equations (4.305) -
(4.316) may be paired off and combined with the other conditions to yield the
following results:

Hy, = Hy + A k)=, Kk, (4.340)

Mgt = M- T Aoty - t)) (4.341)

: xv4+ = sz_ - xyz_(t4 - t2) s (4.342)
Mg = Pyom 0 (4.343)

5 At = Aya- o (4.344)
- A = Moo (4.345)

Equations (4.317) - (4.328) may be paired off and combined with the other
conditions to yield the following results:

Hop = Hg_ + X o Kyt A oKy (4.346)
Z A7t = Mgse T Ags-(tg - to) (4.347)
: Ao+ = Mys- T Ays_(t7 - tg) (4.348)
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A7+ = Axs5o 0 (4.349)
Age = As_ - (4.351)

Finally, the useful results obtained from the remaining equations (4.329) -
(4.339) are as follows:

H8— = Am8—k3 s (4.352)
xxs_ =0, (4.353)
= - (
Am8— 1. (4.354)
Thus, A_ = 0 throughout the trajectory. Since H is a constant along each

of the lnrestricted arcs, combining equations (4.352), (4.341) and (4.340)
yields the following results:

L2 Hy -,k =0 (4.355)
L, =Hg - A ¢k, =0 (4.356)
L.z H Ao k,=0 (4.357)

37 98- " "m8-"3

These last three equations are identical to the results obtained by Mason

and may be used as switching functions to determine t2’ t5 and t8 respectively.
Since the coasting time is fixed, (t4 - t,) and (t., - t5), the equa-

tions of motion (4.258) - (4.262), Euler equations (4.2%4) -"(4.269), End-

point/corner restrictions (4.272) - (4.283), jump conditions (4.284) -

(4.295), and finally the optimal endpoint/corner conditions (4.340) - (4.354)

contain sufficient information to obtain a numerical solution. The procedure

would be as follows:

1. Guesses are made for the unknown initial values of the Lagrange
multipliers*,

2. The equations of motion plus Euler equations for the first stage
are integrated until the condition Ll = 0 is satisfied.

3. The jumps in the state variables and Lagrange multipliers are
calculated.

4. The equations of motion plus the Euler equations are integrated
for the second stage until the condition L2 = 0 is satisfied.

*Due to homogeneity one initial value may be arbitrarily fixed at some non-zero
number. Then, equation (4.354) may be ignored.
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5. The jumps in the state variables and Lagrange multipliers are
calculated.

6. The equations of motion plus the Euler equations are integrated
for the third stage until the condition L3 = 0 is satisfied.

7. At this point a check is made to see if the final conditions

uf =C
vf =C
yg=C

are satisfied. If not, steps 1-7 must be repeated until they are.

It is interesting to note that these results are easily reduced to the
fixed structure case, i.e. when the mass discontinuities are fixed constants.
For that case H is zero during each thrust period and non-zero during each
coast. The switching functions are L. = H,,K and L, = H 4+ 32 third switch-
ing function is unnecessary. Since L] determines 29 tge arguments of H4+
must be computed with the aid of equa%ions (4.286) = (4.289) and (4.341) -

(4.345), and similarly for L2.

Case II--thrust-coast-thrust optimal transfer problem -In the calcu-
lation of optimal orbit transfer trajectories it is frequently necessary
to consider the possibility that the E ajectory is composed of intermediate
coasting orbits. Recently de Veubeke =~ has examined this optimal transfer
problem and has given an analytic solution with a coast period for inverse
square force fields. By integrating the Euler equations along the coasting
arc in closed form he was able to solve for the optimal transfer coast
angle. The results of de Veubeke may also be obtained by using the methods
of Section III which eliminate the necessity of integrating the Euler

equations along the coasting arc.

Consider the problem of determining the optimal transfer of a comstant
thrust vehicle from one circular orbit to another coplanmer circular orbit
as shown in Figure (4.7). The objective is to maximize the payload during

this process.
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3 -{—— COASTING

~~_2

THRUSTING

INITIAL ORBIT

FINAL ORBIT

FIGURE 4.7 OPTIMAL ORBIT TRANSFER WITH A COASTING SEGMENT

The dynamical equations of constraint for the vehicle shown in Figure 4.7
are

v =L cos x—g—Msin Y (4.358)
m 2
T
=L _ oM \'A
Y= sin X rzv cos y + ZCos Y, (4.359)
r=vsiny , (4.360)
$ = -‘1{ cos Y , (4.361)
m= -8 , (4.362)




where GM is the universal gravitational constant times the mass of the
parent body. The constant thrust is given by T and m is the mass of the
rocket. During thrusting periods the mass of the vehicle is assumed to
decrease at a constant rate -B. The other symbols are defined in Figure 4.7.
The state variables v, v, r, ¢, and m are subject to a single control
variable X which leaves one degree of freedom for optimal control.

Only one coasting period will be assumed, hence the trajectory will
have one restricted arc between the points 2 and 3 as shown in Figure 4.7,
Setting this problem up in the Mayer form (Z = mes F = 0) the Hamiltonian
function becomes

- T GM . T . GM v
H= )X [= cos - == sin + A |[=— sin - X cos + X cos
v( X 2 Y) Y( X ) Y Y)

m r mv ‘v r

e

+ )\rv sin Yy + A Y cos y - AmB . (4.363)

br

The Euler equations applicable for arcs 1-2 and 3-f are as follows:

v Euler Equation: iv = Ay(% sin x - M cos Y - 25—3-)

2 2 r
mv rv
- A_siny -2, ECS XY . (4.364)
r ¢ r
Eul ion: A = GM - M _ ¥ i
% Y Euler Equation AY Av( 5 cos y) )\Y< > - sin y
E r rv
f" - X v cos Y 4+ 2 N sin Y (4.365)
: T ¢ r
o oM M _ v
r Euler Equation:A_ = -2\ 2= sin y - A 2=— - — cos Y

. T v 3 Y 3 2
: r rv r
+ A, X cos 4,366
? — Y o ( )
= r
% ¢ Euler Equation: >.\¢ =0, (4.367)
] e o, T T .
E m Euler Equatlon-)\m >‘v 5 €os X + )\Y — sin x , (4.368)
4 m m v
H
: A
: X Euler Equation: tan y = L. . (4.369)
% V)\V
! with the following first integral to the Euler equatioms
:
If H = constant . (4.370)




Following the methods of Section III the arcs 1-2 and 3-f as shown
in Figure 4.7 may now be eliminated. In this case

Z= me (4.371)

8 =0. (4.372)

The following conditions are applicable at the initial and final points of
the trajectory.

b=t =0, (4.373)
by=v, - C=0, (4.374)
by=v; =0, (4.375)
y,=1,-C=0, (4.376)
bs = ¢, =0, (4.377)
bg=my -C=0, (4.378)
¥, = v, -C=0, (4.379)
Vg = v =0, (4.380)
bg= T, -C=0. (4.381)

Thus the final range angle ¢ and final time t, are left free. The "jump"
conditions in the state variables between the points where coast begins
(point 2) and the point where re-ignition takes place (point 3) may be
obtained from the dynamical equations of constraint by setting T = 0 and
B = 0. However, under this circumstance these equations reduce to those
governing the well-known two-body problem. Thus the "jump" in v may be
obtained from the energy equation
2 2
ap =dvyt - - @G (4.382)
ry T,

and the "jump" in y may be obtained implicitly from the conservation of
momentum

0.2 = r3v3 cos Y3 - r2V

g €OS Y, = 0. (4.383)
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The "jump" in r may be obtained from the equation of the path

_ hZZGM . h = h(rzvzyz)
T 1+ (4.384)
e cos ¢ = e(r )
e e(r,vyv,

However, for convenience of calculation, equation (4.384) evaluated at
points 2 and 3 will be written as follows

ag = ¢3 -4y - G3(r2r3v2Y2) + Gz(rzvzyz) =0 . (4.385)

The "jump" in ¢ is obtained implicitly from the equation
% =n, (4.386)
to give

2
@, = - Jﬁ ﬁ_ d¢ +t, - t, =0 . (4.387)

o, =m, -m, = 0 . (4.388)

The 6 function for this case is identically zero. By forming Z* and setting

dZz* = 0, the following condition in abbreviated notation is obtained
92—
* = -
dz dz + u dy_+ v,do, + [ Hdt + Aidyi‘] .
£
+ [ -Hdt + A.dyi ] =0. (4.389)
* 3+
This condition yields the following results:
Point 1 dt: Hy + Hl =0, (4.390)
: - = .391
dv: Hy Avl 0, (4.391)
: - = 4.392
dy: u, xYl 0, ( )
. - = 4.393
dr: w, - A, =0, ( )
: - = 4.394
d¢: wg )\¢1 0, ( )
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Point 2

Point 3

Point f

dm:

dt:

dv:

dy:

dr:

d¢:

dm:

dt:

dv:

dy:

dr:

dé:

dm:

dv:

dy:

dr:

dé:

Mg = Aml =0. (4.395)
_\)4 - H2_ =0 , (4. 396)
o a0
- - 4 + A =0 4.397
ViV, = VT, €os Y, + v, - + v4_3¥_ v s ( )
2
o3 % 42 0 (4.398)
v,r,v, sin vy, + v, —= + v,. = . .
27272 2 3 4 2-
3‘Y2 B'Yz Y
da da
-y GOM _ 3 + 4 = )
vl.ji V,V, COS Y, + Vj " v, P + ArZ— 0 ,(4.399)
T, 2 2
2
2430 =0 (4.400)
v3 + \)4 . 62— = ’ .
~ve + A, =0 . (4.401)
A + H3+ =0, (4.402)
ViVs3 + V,Ty COS Yg - Av3+ =0, (4.403)
~V,rqvy sin Yy - AY3+ =0, (4.404)
oM dag 0 (4.405)
vl __E + vzv3 cos Y3 + v3 5;_.— 3+ - ’ .
r 3
3
2
3 A =0 (4.406)
vy TV, = o3 = , .
v5 - Xm3+ =0 . (4.407)
He =0, (4.408)
My + Avf =0, (4.409)
= .410
ug * AYf o, (4.410)
byt A =0, (4.411)
Aog = 0 (4.412)
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dm: 1+ Amf =0 . (4.413)

Equations (4.390) - (4.395) yield no usable information. Equation (4.396)
combined with (4.402) yields

Hy, = H,_ . (4.414)

This result combined with equation (4.408) and the fact that H is constant
on the arcs 1-2 and 3-f shows that

H=0 (4.415)
on each of the unrestricted trajectories.

This result combined with equation (4.396) or (4.402) shows that

v, =0. (4.416)

Thus when equation (4.400) is added to equation (4.406) the following result
is obtained

(4.417)

Since A, is a constant along each of the unrestricted arcs [equation 4.367)]
the congition given by equation (4.412) requires that

A, =0 , (4.418)

along arcs 1-2 and 3-f. Thus,either equation (4.400) or (4.406) may be
used to show that

v, =0 . (4.419)

Multiplying equation (4.398) by cot y, and equation (4.404) by cot Y3
and adding [making use of equations (4.383}, (4.416), and (4.419)]
results in

ta
"3, (4.420)

)\ =
y3+ Y2- tan 0

Equation (4.398) and (4.404) may be solved for vy to give

t cot vy
byl A, = - 3 gy - (4.421)
T,V, €os Y, T,V, COS Ygq

1f equation (4.397) is divided by v, and equation (4.403) divided by Vi,
then the resulting equations may be“added and with the use of equation
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(4.421) yield

. (4.422)

v cot vy cot v
= S+ 2 x., - 3 2
)\v3+ )\VZ— < v > V3 2 Y2- 2 Y3+

2 v2 v3

The multiplier v, may now be evaluated from equations (4.397) and (4.403)
to give

Ot Yy A 22073, . (4.423)
2 Y2- v 2 Y3+
3 v3

A
v, = V2= 4

2 v,

Substituting for v, and Vo from equations (4.421) and (4.423) into equations
(4.399) and (4.405) yield$:

v
- _GM 2 cM + =0 4,424
> sin Y2xv2- +(r2 -5 )cos YZXYZ— v, sin Y2kr2- . ( )

2 T2 V2

and

- GM V3 _ _eM -
=5 sin Y3Av3+ + =5 cos Y3AY3+ + vq sin Y3Ar3+ 0. (4.425)
*3 3 V3

Finally equations (4.401) and (4.407) may be combined to yield

A = A . (4.426)

With a considerable amount of involved algebraic manipulations, the
above equations may now be put into a more useful form. Assuming that
T =T, , 83 = B, , and my; =m, , and substituting equations (4.424), (4.425)
ald (42426)3into’equation’ (4.434) yields

A A
Y3+ = 2- . .
A3+ €08 x4 v, sin X5, Agpo €08 X, t _%;_ sin x,_ (4.427)
From the control equation

A A
sin x = X, and cos X = Y, (4.428)

vA A

2 2 A 2
where A~ = Xv + (-1- . Therefore equation (4.427) becomes
v

Ao, = A . (4.429)

3+ 2-
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Combining equations (4.422) and (4.420) gives

2
A
V22 s LoD 1\ ot ohy Ay
v3+ 3 2 2 2 v
v2 V2 v3 2
2
A1 2
+ ) 3 2 cot Y2xy2—
2 V3
From equation (4.383)
r,V, COS Y cos Y
cos v = 2.2 2 - 2
r3v3 RV
r v
where R =-3 and V=_3 , Thus
r, v,
2.2
tan "y, = RV -1,
cos”y,
and from equation (4.420)
2 2 2
TS SR SR I G G
v 2 2V2 2
3 vy cos™y,

Substituting equations (4.430) and (4.433) into (4.427) yields,

2
2 sz_ 1 1 cot Y2ly2—xv2- 2
Ve | =5— + 2( =& - =) + (
‘ 2 v2 v2 V2
Vo 2 3
2 2
N XYZ_ cot Yy R2V2 N 2 N A 2-
V2V2 c S2 v2- v2
2 °% ¥ 2

22 cot Yotyo-
2 V3

(4.430)

(4.431)

(4.432)

(4.433)

(4.434)
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VZAV -
and replacing x by cot X gives,

Dividing by AYZ

2~ y2-
cotzx cot vy, cot X
2 2 1 1 2 2 1 1 2
V3 7 + 2(V2 - 7 + (55 - 5) coty,
2 2 V3 V2 V2. V3
2 2
. cot Yy RZ 1 ) cot X2 +‘l_
v2 cosz V2 2 2 "
2 Y2 V2 V2

Multiplying by vg and rearranging terms yields,

2 2
(V2 -1 cotzxz + 2(V2 - 1) cot Yy cot X + LX——%—ll— cot2 Y,

v
=1_ _i.__l_. Ctz
2 2| Y2
cos Y A
2
or simply
2
(V2 - 1) cotzx + 2 cot vy, cot X, + cotzy s L-R .
2 2 2 2 2
sin™y
2
but
VZ _ 1 = 2GM 1 -R )
r v2 R
2°2
Thus, by letting 9
26Msin"y, 2
K= ————__E—_ cot Y2 + cot Xo ’
T2V2

The following result is finally obtained from equation (4.437)

1-R ®RE+R-K =0.

The roots for this equation are

Rl =1
2
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(4.435)

(4.436)

(4.437)

(4.438)

(4.439)

(4.440)

(4.441)

(4.442)
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s (4.443)

R = - [V1+4K +1}
3
Since R > 0 the third root must be discarded. This leaves two possible
solutions which are equivalent to those given by de Veubeke.

The solutions given by equations (4.441) and (4.442) can each be
interpreted in two different ways. The root Rl implies either

(a) No coast (Degenerate solution)
or (b) Coast to a symmetric point (Symmetric solution)

The root R2 implies either a coasting arc to a point
(c) on the same side of the major axis as point 2 (Asymmetric
solution)

or a coasting arc to a point

(d) on the opposite side of the major axis as point 2 (Symmetric-
Asymmetric solution)

If the coasting trajectory at point 2 is an ellipse, all solutions are
physically realizable (provided that r Ty If the
coasting arc at point 2 is a parabola Brragﬁyperbola, gﬁeﬁ %he physically
realizable solutions depend on r2 and R2 as follows
(a) 1If r. < 0 then all solutions are possible except for the

asymmetrlc one with R, > 1 .,

(b) If r, > O then only tﬁe degenerate solution and the
asymmetric solution with R2 > 1 are possible.

Using the information developed so far, the following procedure may
now be used to obtain a solution:

1. Guesses are made for the unknown initial wvalues of the
Lagrange multipliers.

2. The equations of motion plus the Euler equations for the
first thrusting arc are integrated until the condition given
by equation (4.424) is satisfied.

3. A choice must now be made for R among the possible physically
realizable solutions and a "jump" made to the point 3 using
equations (4.382) - (4.388) and equations (4.417), (4.420),
(4.422), (4.425) and (4.426).

4. The equations of motion plus the Euler equations for the
final thrusting arc are then integrated and a check is
made to see if the final endpoint is intercepted.

The conditions developed in this paper are not sufficient to dictate
the proper choice for R at the point 2. It is apparent that there is need
for further study into this matter.
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SECTION V

DISCUSSION AND CONCLUSIONS

The space mechanics and flight mechanics problems presented in
Section IV possess the following characteristics:

2.

3.

They are subject to a single control variable.

The control variable can be extremized only over certain
portions of the total trajectory. Over these portioms,
the problem falls under the clarification of the "Problem
of Bolza'".

Over the remaining portions of the trajectory the control
is prescribed.

The theorv presented in Sections II and III is developed for problems
of the above type. It is based on the requirement that the dynamical con-
straint equations are integrable analytically along those arcs over which
the control is prescribed. Under such circumstances, the theory yields
a solution by following two distinct procedures.

1.

2.

The Euler equations are solved only over the unrestricted
portions of the trajectory to determine the optimal control.

A set of "corner conditions" containing relations involving
endpoints of the restricted segments are then solved in con-
junction with the Euler equations to yield the optimal end-
points and corner points. The relations involving the endpoints
of the restricted segments are determined by integrating the
dynamical constraint equations along the restricted arcs.

The following conclusions are made on the basis of applying the above
procedure to the problems presented in Section IV.

1.

58

Analysis and computation for a given problem are simplified by
eliminating the need to integrate augmented Euler equatioms

along the restricted arcs.

The theory is relatively simple to use and is universally
applicable to all problems with restricted arcs independent

of how the arc is generated.

The requirement of being able to integrate the restricted
equations of motion does not present any particular difficulty
for the large class of space mechanics problems which involve
coasting periods. (Assuming that the coast period may be

treated as a classical two body problem)

There are several other important problems in which the inte-
gration requirement does not present difficulties.

For certain problems, such as the optimal staging with coast
periods one, switching functions are obtained which locate the
beginning of the restricted arc. These functions depend on state
variables evaluated at the end of the restricted arc. This situa-
tion would complicate any procedure requiring integration of the
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Euler equations, whereas it does not complicate the arc elimin-
ation method used here.

6. Parameters may be introduced to make problems with discontin-
uities continuous again; however, the use of parameters does not
necessarily simplify computation needed for a solution.

Neither the theory nor the extent of the applications presented in
this paper may be regarded as being complete. As was pointed out at the
end of Section IV, the "corner conditions" developed here are necessary
but not sufficient conditions for the location of a cormer point. There
is a need for the development of sufficiency conditions for the type of
problems considered here that would dictate the proper solution for the
location of a corner when more than one is obtained.

Problems which do not satisfy the integration requirement may be
handled in some cases by using "engineering approximations'. For example,
if coasting periods are short an assumption of constant gravity magnitude
and direction is frequently appropriate. Also, for low-thrust rocket
vehicles maneuvering in the vicinity of a planet the thrust force is
negligible in comparison with the gravitational force. Thus, one may
conclude that by proper use of engineering assumptions and physical
interpretation it is possible to apply the arc elimination technique to
a much larger class of problems.
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